
www.manaraa.com

Research Reports in Software Engineering and Management 2014:02 ISSN 1654-4870

Report from the GI Dagstuhl Seminar 14433: Software
Engineering for Self-Adaptive Systems
Thomas Vogel, Matthias Tichy, and
Alessandra Gorla

Department of Computer Science and Engineering

www.manaraa.com

Report from the GI Dagstuhl Seminar 14433: Software Engineering for Self-

Adaptive Systems

Thomas Vogel, Matthias Tichy, Alessandra Gorla (editors)

© authors, 2014

Report no 2014:02

ISSN: 1651-4870

Department of Computer Science and Engineering

Chalmers University of Technology and University of Gothenburg

Chalmers University of Technology
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden

Telephone + 46 (0)31-772 1000

Göteborg, Sweden 2014

www.manaraa.com

Research Reports in Software Engineering and Management No. 2014:02

Report from the GI Dagstuhl Seminar 14433:
Software Engineering for Self-Adaptive Systems

Thomas Vogel1, Matthias Tichy2, and Alessandra Gorla3 (editors)

1 Hasso Plattner Institute, University of Potsdam, Germany
thomas.vogel@hpi.de

2Software Engineering Division, Chalmers | University of

 Gothenburg, Gothenburg, Sweden
 matthias.tichy@cse.gu.se

3Saarland University, Germany

gorla@st.cs.uni-saarland.de

www.manaraa.com

Report from the GI Dagstuhl Seminar 14433

Software Engineering for Self-Adaptive Systems
Edited by
Thomas Vogel1, Matthias Tichy2, and Alessandra Gorla3

1 Hasso Plattner Institute, University of Potsdam, DE,
thomas.vogel@hpi.de

2 Chalmers | University of Gothenburg, SE,
matthias.tichy@cse.gu.se

3 Saarland University, DE,
gorla@st.cs.uni-saarland.de

Abstract
Nowadays, software has become a key feature and driver for innovation of a wide range of prod-
ucts and services such as business applications, vehicles, or devices in various domains such
as transportation, communication, energy, production, or health. Consequently, our daily lives
highly depend on such software-intensive systems. This results in complex systems, which is
even more stressed by integrating them to systems-of-systems or cyber-physical systems such
as smart cities. Therefore, innovative ways of developing, deploying, maintaining, and evolving
such software-intensive systems are required. In this direction, one promising stream of software
engineering research is self-adaptation. Engineering self-adaptive systems is an open research
challenge, particularly, for software engineering since it is usually software that controls the
self-adaptation. This GI-Dagstuhl seminar focused on software engineering aspects of building
self-adaptive systems cost-effectively and in a systematic and predictable manner. This includes
typical software engineering disciplines such as requirements engineering, modeling, architecture,
middleware, design, analysis, testing, validation, and verification as well as software evolution.

GI Dagstuhl Seminar 19.–24. October, 2014 – www.dagstuhl.de/14433
1998 ACM Subject Classification D.2.10 [Software Engineering] Design, D.2.11 [Software En-

gineering] Software Architectures
Keywords and phrases software engineering, self-adaptive systems, software evolution, require-

ments engineering, distributed systems

1 Executive Summary

Thomas Vogel
Matthias Tichy
Alessandra Gorla

License Creative Commons BY 4.0 International license
© Thomas Vogel, Matthias Tichy, and Alessandra Gorla

Nowadays, software has become a key feature and driver for innovation of a wide range of
products and services such as business applications, vehicles, or devices in various domains
such as transportation, communication, energy, production, or health. Consequently, our
daily lives highly depend on such software-intensive systems that therefore have to “become
more versatile, flexible, resilient, dependable, energy-efficient, recoverable, customizable,
configurable, and self-optimizing by adapting to changes that may occur in their operational
contexts, environments and system requirements” [1, p. 1]. This results in complex systems,

Except where otherwise noted, content of this report is licensed
under a Creative Commons BY 4.0 International license

http://www.dagstuhl.de/14433
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

2 Software Engineering for Self-Adaptive Systems

which is even more stressed by integrating them to systems-of-systems or cyber-physical
systems such as smart cities. Therefore, innovative ways of developing, deploying, maintaining,
and evolving such software-intensive systems are required, which are major research challenges.

In this direction, one promising stream of software engineering research is self-adaptation,
that is, systems that are able to automatically adjust their behavior and structure in response
to changes in the environment or their own states and requirements. Engineering self-adaptive
systems is an open research challenge, particularly, for software engineering since it is usually
software that controls the self-adaptation [1].

Besides the notion of self-adaptive software systems, there are various other designations
for such systems in the literature, such as self-healing, self-optimizing, self-managing, self-*, or
autonomic systems. All of them share basic characteristics with respect to runtime adaptation
though they oftentimes focus on specific concerns such as runtime failures (self-healing) or
performance (self-optimization).

This GI-Dagstuhl seminar focused on software engineering aspects of building self-adaptive
systems cost-effectively and in a systematic and predictable manner. This includes typical
software engineering disciplines such as requirements engineering, modeling, architecture,
middleware, design, analysis, testing, validation, and verification as well as software evolution
(including software maintenance). Thus, the theme of the seminar jointly addressed the
different software engineering disciplines to tackle the challenge of engineering self-adaptive
systems.

The main goals of the seminar have been twofold. First, the seminar has brought together
young researchers from the research community of “Software Engineering for Adaptive and
Self-Managing System” (SEAMS)1. In the scope of this community, a series of Dagstuhl
seminars on “Software Engineering for Self-Adaptive Systems”2 have been organized while
this seminar has aimed for young researchers to present their current research projects, to
exchange experience and expertise, to discuss research challenges, and to develop ideas for
future collaborations. Second, the proposed seminar has opened the SEAMS community to
young researchers from related areas, particularly, the SPP 1183 “Organic Computing”3, SFB
901 “On-The-Fly Computing”4, SFB 1053 “MAKI – Multi-Mechanism Adaptation for the
Future Internet”5, and SPP 1593 “Design For Future – Managed Software Evolution”6. Thus,
the seminar has fostered interaction and collaboration among young researchers working on
self-adaptive software and related areas, which can be seen by the seminar’s program.

The first two days of the seminar were spent on talks by the participants in session
on “Requirements and Development”, “Design and Development”, “Control Theory and
Synthesis”, “Monitoring, Analysis and Decision-Making”, “Verification, Validation, and
Assurances”, “Resource Efficiency and Performance”, “Context-based Applications”, and
“Embedded and Cyber-Physical Systems”. Based on these sessions, the participants formed
break out groups that discussed hot topics in software engineering for self-adaptive systems
during the last three days. These topics covered (1) the role of the user and context for
self-adaptation, (2) distributed self-adaptive systems, (3) cyber-physical and self-adaptive

1 Cf. SEAMS section on http://www.self-adaptive.org.
2 Software Engineering for Self-Adaptive Systems: Assurances (2013): http://www.dagstuhl.de/13511

Software Engineering for Self-Adaptive Systems (2010): http://www.dagstuhl.de/10431
Software Engineering for Self-Adaptive Systems (2008): http://www.dagstuhl.de/08031

3 http://www.organic-computing.de/SPP
4 http://sfb901.uni-paderborn.de/
5 http://www.maki.tu-darmstadt.de/sfb_maki/index.en.jsp
6 http://www.dfg-spp1593.de/

http://www.self-adaptive.org
http://www.dagstuhl.de/13511
http://www.dagstuhl.de/10431
http://www.dagstuhl.de/08031
http://www.organic-computing.de/SPP
http://sfb901.uni-paderborn.de/
http://www.maki.tu-darmstadt.de/sfb_maki/index.en.jsp
http://www.dfg-spp1593.de/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 3

systems, and (4) assurances for self-adaptive systems. Furthermore, some breakout groups
formed subgroups to focus on specific research questions of the topics. Short reports from
each (sub)group are listed in Section 2.

References
1 R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,

G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. Goeschka, A. Gorla, V. Grassi,
P. Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mi-
randola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer, R. Schlichting,
D. B. Smith, J. P. Sousa, L. Tahvildari, K. Wong, and J. Wuttke. Software Engineering
for Self-Adaptive Systems: A second Research Roadmap. In R. de Lemos, H. Giese, H. A.
Müller, and M. Shaw, editors, Software Engineering for Self-Adaptive Systems II, volume
7475 of LNCS, pages 1–32. Springer, 2013.

www.manaraa.com

4 Software Engineering for Self-Adaptive Systems

Table of Contents

Executive Summary
Thomas Vogel, Matthias Tichy, and Alessandra Gorla 1

Breakout Groups . 6

Smart Grid / Smart Home Self-adaptive Exemplar
Amel Belaggoun, Alexander Frömmgen, Alexander Schiendorfer, Matthias Tichy,
and Sebastian Wätzoldt . 6

Self-Adaptation in Highly Distributed Dynamic Systems
Ilias Gerostathopoulos, Sebastian Götz, Filip Krikava, Adnan Shahzada, and Romina
Spalazzese . 6

Artifact-Centric Requirements Engineering for Self-Adaptive Systems
Alessia Knauss, Juan C. Muñoz-Fernández, Lorena Castañeda, Matthias Becker,
Mahdi Derakhshanmanesh, Nina Taherimakhsousi, and Robert Heinrich 7

Mitigating Data Leakage in Federated Self-Adaptive-Systems
Eric Schmieders, Christopher Bailey, and Iván Páez Anaya 9

Assurances for Self-Adaptive Software Systems
Sinem Getir, Simos Gerasimou, Benedikt Eberhardinger, and Thomas Vogel 9

Topology Awareness for Self-Adaptive Systems
Antonio Filieri, Inti Gonzalez-Herrera, Alessandra Gorla, and Liliana Pasquale . . 12

Overview of Talks . 14

Integrating Predictive Analysis with Self-Adaptive Systems
Ivan Paez Anaya . 14

Handling Insider Threats through Self-Adaptation
Christopher Bailey . 14

Engineering Resource-Efficient and Elastic Self-Adaptive Systems
Matthias Becker . 15

Is it Useful to Make AUTOSAR Fully Dynamic?
Amel Belaggoun . 15

Supporting Senior Shoppers with Self-Adaptive Personalized Web-Tasking
Lorena Castaneda . 16

The Vision of Model-Integrating Development
Mahdi Derakhshanmanesh . 16

Testing Self-adaptive, Self-organising Systems
Benedikt Eberhardinger . 17

Automated control synthesis for dependable software adaptation
Antonio Filieri . 17

Design Principles for Adaptive Communication Systems
Alexander Frömmgen . 18

Runtime Quantitative Verification in Self-Adaptive AI Systems
Simos Gerasimou . 18

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 5

Adaptation in Ensemble-Based Component Systems: From System Goals to Archi-
tecture Configurations
Ilias Gerostathopoulos . 18

Model-based Probabilistic Incremental Verification for Evolving Systems
Sinem Getir . 19

Multi-Quality Auto-Tuning: From Energy-neutrality to Robots and Roles
Sebastian Götz . 19

Resource reservation in pervasive middleware
Inti Gonzalez-Herrera . 19

Self-Healing by Means of Intrinsic Redundancy
Alessandra Gorla . 20

Integrating Observation and Modeling Techniques to Support Adaptation and
Evolution of Software-intensive Systems
Robert Heinrich . 21

Elicitation, Discovery and Evolution of Contextual Requirements
Alessia Knauss . 21

System-Level Abstractions for Integrating Control Mechanisms into Software Sys-
tems
Filip Krikava . 22

Requirements Engineering Framework for Self Adaptive Software Systems
Juan Carlos Muñoz Fernández . 22

Topology Aware Adaptive Security
Liliana Pasquale . 23

Constraints in Self-organizing, adaptive Systems
Alexander Schiendorfer . 23

Runtime Model based Privacy Checks of Cloud Services
Eric Schmieders . 24

A Comprehensive Framework for the Development of Dynamic Smart Spaces
Adnan Shahzada . 24

Automated approaches to build self-adaptive systems
Romina Spalazzese . 25

Context-based Face Recognition for Smart Application
Nina Taherimakhsousi . 25

Dependability Improvement by Self-Adaptation
Matthias Tichy . 26

Model-Driven Engineering of Self-Adaptive Software with EUREMA
Thomas Vogel . 26

Modeling Collaboration in Cyber-Physical Systems
Sebastian Wätzoldt . 27

Participants . 28

www.manaraa.com

6 Software Engineering for Self-Adaptive Systems

2 Breakout Groups

2.1 Smart Grid / Smart Home Self-adaptive Exemplar
Amel Belaggoun, Alexander Frömmgen, Alexander Schiendorfer, Matthias Tichy, and Sebas-
tian Wätzoldt

License Creative Commons BY 4.0 International license
© Amel Belaggoun, Alexander Frömmgen, Alexander Schiendorfer, Matthias Tichy, and Sebastian
Wätzoldt

Self-adaptive software (SAS) constitutes a key ingredient in the realization of cyber-physical
systems that are inherently distributed. A very prominent example of such systems is found
in the area of smart homes coupled with smart energy capabilities. Such a home can for
instance offer production via photovoltaic plants or storage reserves in form of an electric
vehicle. Designing efficient distributed control strategies is important - yet many approaches
start from a very customized and hence incomparable initial setup. We therefore discussed
an exemplar case study that could serve as a benchmark for evaluations of self-adaptations
mechanisms. To be useful for SAS-developers, we included an initial meta-model and both a
set of user stories that target requirements of quantities to be evaluated as well as a set of user
stories highlighting possible collaboration scenarios (fully centralized vs. fully decentralized,
proactive vs. reactive) inspired by ongoing research in the smart grid community.

2.2 Self-Adaptation in Highly Distributed Dynamic Systems
Ilias Gerostathopoulos, Sebastian Götz, Filip Krikava, Adnan Shahzada, and Romina Spalazzese

License Creative Commons BY 4.0 International license
© Ilias Gerostathopoulos, Sebastian Götz, Filip Krikava, Adnan Shahzada, and Romina Spalazzese

This breakout group focused on identifying the challenges of performing self-adaptation
in highly distributed dynamic systems. This is a pressing issue in self-adaptive systems
research, as proposed “smart” systems are increasingly built out of disparate entities (sensors
and actuators) that feature a close connection to the physical world – so-called cyber-
physical systems (CPSs). Examples are numerous: intelligent vehicle navigation, fleets of
autonomous robots, emergency coordination systems, to mention just a few. CPSs are
typically distributed at the physical space and feature no firm boundaries – they are open-
ended. They are composed of loosely connected entities, that are often mobile. Grafting
such systems with self-adaptive capabilities is a distinct challenge, which projects itself in all
phases of the autonomic loop.

After debating on the different problems that can arise, the group focused on the issue
of efficient information sharing between the entities of a self-adaptive CPS and how this
affects the overall utility of the system. Our main assumption was that there is no central
coordination point in our target CPS, but rather each entity follows its own decisions based
on its partial view over the rest of the system. We also assumed that entities form ad-hoc
collaboration groups to achieve common system-level objectives. Each partial view is then
updated according to the information shared between the collaborating groups. In this frame,
a separate autonomic loop is instantiated for each entity and consists of (i) monitoring the
changes in the environment/nearby entities, (ii) creating a partial runtime model capturing
the state of the world as viewed by the entity in question, (iii) deciding based on the partial
runtime model and the adaptation logic, (iv) enacting the necessary changes to the runtime

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 7

behavior of the entity in question. In our discussions, we considered the case of a “smart
crossroad", where each car decides whether to cross or wait at a crossroad according to its
view over the positions and intentions of the other cars in the crossroad. In this case, the
ad-hoc collaboration group between the cars that approach the crossroad has the objective
to avoid collisions and increase the safety of the whole system.

Moving into the more concrete questions, the following challenges have been discussed in
more detail:
1. How to disseminate the information necessary to build the individual partial

runtime models in an efficient way? The problem is that communicating the
information of each entity with every other entity in the CPS overloads the network
and threatens the privacy of individual entities. Hence, there is a need for an efficient
dissemination strategy for partial model building. Apart from the obvious yet naive
strategy where every entity shares all its information with each and every one (mentioned
above), we identified two more elaborate strategies: (i) each entity in a collaboration group
shares all its information only with the group members; (ii) each entity in a collaboration
group shares only the information that are relevant to its objectives and the objectives of
the group only with the group members, i.e. shares only a fraction of its information.

2. How to design runtime abstractions in order to support explicit information
exchange between the entities of a collaboration group? We have looked into
the technical aspects for partial model sharing. Essentially, this is a problem of model
querying with role-based access control and model merging. The models of the entity
that represent its own view should allow to express what information are accessible to
whom and what information are to be exchanged in each collaboration group. Once the
information has been gathered, the next step is to find a way to merge it into the entity’s
existing partial view (at the receiving end). This becomes challenging when we consider
that the same information can be provided by multiple entities and with different quality
and precision. The merging has to therefore involve some trust schemes, temporal aspects
as well as to support versioning and transactions.

2.3 Artifact-Centric Requirements Engineering for Self-Adaptive
Systems

Alessia Knauss, Juan C. Muñoz-Fernández, Lorena Castañeda, Matthias Becker, Mahdi
Derakhshanmanesh, Nina Taherimakhsousi, and Robert Heinrich

License Creative Commons BY 4.0 International license
© Alessia Knauss, Juan C. Muñoz-Fernández, Lorena Castañeda, Matthias Becker, Mahdi
Derakhshanmanesh, Nina Taherimakhsousi, and Robert Heinrich

Given the dynamic nature of self-adaptive systems, traditional processes and artifacts for
requirement engineering are not sufficient. Requirements engineering activities for self-
adaptive systems have to take place at design time and runtime [2]. When developing a
self-adaptive system, the designers have to define structural and behavioral adaptation points
explicitly (where, when, what, how). In traditional approaches, a certain set of artifacts (e.g.,
requirements lists, goal models, feature models, statecharts, ...) is managed by requirements
engineers. To achieve adaptivity, a self-adaptive system must be aware of this knowledge,
i.e., in the form of runtime artifacts that are central constituents of the system and can be
changed at runtime [1].

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

8 Software Engineering for Self-Adaptive Systems

We envision that the interface between the design and runtime requirements engineering
activities are artifacts that are created by the requirements engineer at design time and will
be used and modified by the self-adaptive system at runtime. The goal of our breakout group
was to gather a better and common understanding of (i) specific activities and (ii) related
artifacts concerned with requirements engineering for self-adaptive systems. We especially
focused on the roles of context and chiefly users context (users are one of the context) in
the process of designing self-adaptation. Therefore, we specified a requirements engineering
process that can be followed and a set of artifacts that can be used at design time and
runtime. We constraint the process to seven steps:

1. Elicit requirements and goals.
2. Identify ambiguities in requirements and goals. Ambiguities might represent different

influence factors.
3. Identify context that can have an influence on the system behaviour. Ambiguous require-

ments can be refined further through context-attributes (e.g., time and location).
4. Define context situations and variability in such situations.
5. Start with step 1 to identify more goals or step 2 to identify more ambiguities.
6. Define architectural significant requirements.
7. Operationalize the variability in the solution space through the definition of components.

Follow up: Along with a refined version of this initial process, we plan to give an overview
of state-of-the-art and open issues in requirements engineering for self-adaptive systems.

We propose to leave the ambiguity in requirements on purpose and to implement the
system without (fully) resolving the ambiguity. Usually, resolving the ambiguities is an
essential part of the traditional requirements engineering activities. For the case of a self-
adaptive system, however, we claim that making the definition of context-attributes that
cause ambiguity explicit at design time (where possible) and letting the self-adaptive system
resolve them at runtime will allow implementation of the system without fully hard coding,
thereby leaving space for variability. This knowledge about potential adaptation points
enables a self-adaptive system to adapt to emerging situations at runtime to deal with
uncertainty.

As we inspect the sketched research challenge from different research areas such as require-
ments engineering, self-adaptive systems and modelling, we believe that other researchers in
these communities will benefit from our work. Our work will give an overview of research gaps
in this interdisciplinary topic of artifact-centric requirements engineering for self-adaptive
systems.

References
1 N. Bencomo and J. W. et al. Requirements Reflection: Requirements as Runtime Entities.

In Int. Conf. on Software Engineering (ICSE’10), pages 199–202, 2010.
2 N. A. Qureshi, A. Perini, F. Bruno, K. Irst, N. A. Ernst, and J. Mylopoulos. Towards a Con-

tinuous Requirements Engineering Framework for Self-Adaptive Systems. In Proceedings
of 1st International Workshop on Requirements@RunTime, pages 9–16, 2010.

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 9

2.4 Mitigating Data Leakage in Federated Self-Adaptive-Systems
Eric Schmieders, Christopher Bailey, and Iván Páez Anaya

License Creative Commons BY 4.0 International license
© Eric Schmieders, Christopher Bailey, and Iván Páez Anaya

Federated self-adaptive systems exhibit conflict in goals due to the existence of multiple
stakeholders. As a result, these types of system are often vulnerable to exploitation and
attacks. For instance, users of cloud providers have to fulfill privacy regulations that constrain
the geographical locations of where personal data is processed or stored. In contrast to this,
a cloud provider may dynamically transfer software components and data to alternative
geographical locations to minimise cost. This is problematic as privacy reports show that
data leakage rates are country specific. Consequently, sensitive data should be prevented
from being stored or processed in countries with high data leakage to avoid privacy breaches.
This is challenging in federated self-adaptive systems as third-party systems are not fully
controlled by their users. To avoid this, we aim to tackle the problem of predicting and
mitigating data migrations that imply high risks of data leakage. The prediction shall enable
a self-adaptive system which relies on other self-adaptive systems to proactively mitigate
future attacks. Specific problems comprise the monitoring and identification of malicious
behaviour, especially unauthorized data access. The prediction model, build from past
monitoring data, shall be utilized in order to predict future attacks and to execute mitigative
actions proactively.

2.5 Assurances for Self-Adaptive Software Systems
Sinem Getir, Simos Gerasimou, Benedikt Eberhardinger, and Thomas Vogel

License Creative Commons BY 4.0 International license
© Sinem Getir, Simos Gerasimou, Benedikt Eberhardinger, and Thomas Vogel

This breakout group focused on the aspect of assurances for self-adaptive software systems.
We defined assurances as “providing evidence that the self-adaptive software system fulfills
its functional and non-functional requirements throughout its lifetime”. The provision of
assurances was classified by the software engineering community among the most important
research objectives for self-adaptive systems [6] and was amid the research threads discussed
extensively in the recent Dagstuhl seminars on “Software Engineering for Self-Adaptive
Systems” [9, 8]. Our discussion was particularly driven to investigating the differences
between assuring classical (i.e., static, non-adaptive) and self-adaptive software systems in
order to work out differences, commons, and challenges.

Classical systems are characterized by static requirements, contexts, and software/system
architectures that are fixed at design-time and do not change at runtime. In this regard,
research in software engineering has focused for decades on providing techniques and tool-
supported methodologies that, when applied collectively at design-time (i.e., before the system
becomes operational), could assure compliance of the software system with its requirements [4].
Approaches within this category include, but are not limited to, model checking, testing,
simulation, verification, safety analysis, theorem proving as well as inspection and development
process techniques; see Nair et al. [12] for a taxonomy of these techniques. To this end, a
software engineer can employ model-based simulation, using for example Queuing Networks [3],
or can apply system and performance testing using Selenium and JMeter [13, 10], respectively.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

10 Software Engineering for Self-Adaptive Systems

Additionally, model checking and (probabilistic) verification can be useful in determining
whether the system complies with its functional and/or non-functional requirements. Clearly,
these techniques are applicable under the assumption that vital system characteristics, as for
example system configuration, are known at design time and, more importantly, continue to
hold at runtime.

The engineering of self-adaptive software systems brings to the forefront additional
challenges due to the runtime dimension. The challenges we identified include continuously
changing requirements and contexts in dynamic environments throughout the system’s
lifetime, and the inherent uncertainty of such changes, e.g., it is usually not feasible to
anticipate all possible contexts, in which the system may operate, or to precisely characterize
the current context of the system. Typically, to cope with ever-changing requirements,
contexts, or system conditions, self-adaptive systems dynamically adjust their behavior often
by reconfiguring their architecture at runtime [11]. That is, engineering decisions, for instance,
concerning the configuration and architecture of the system are deferred to runtime [1, 2].
Consequently, there is imperative need to continue providing assurances that the system
complies with its requirements at runtime [5], that is, while the system is providing service
and adapting to changing situations (i.e., when the engineering decisions are made).

To investigate how well evidence techniques used in classical systems can cope with the
challenges imposed by self-adaptive systems, we used as a running example the ZNN.com
case study [7], a web-based client-server news system serving multimedia content to its
customers. In the presented rainbow architecture [7] a controller is added to the server-side
which realizes the self-adaptation. The investigation on comparing assurances built on the
concrete performance requirement that “after the server receives a request, the average
response time should not exceed 2s per request”.

We considered several existing evidence techniques and examined their applicability in
assuring reliable operation in self-adaptive systems. Discussed techniques include testing,
model checking, theorem proving and formal methods, as well as simulation and runtime
verification. Clearly, there is a big overlap in the techniques used to provide assurances in
classical and self-adaptive systems. For the latter type of systems, however, these techniques
can be used if and only if critical system characteristics, for instance, requests arrival rate,
are observable and measurable at runtime. Even if this is achievable, most of the existing
evidence techniques have been engineered for design-time use and assuring dependable system
operation at runtime is beyond their capacities.

Supporting high-integrity in self-adaptive systems entails revising existing evidence
techniques as well as developing new approaches in order to tackle the emerging challenges
of these systems. In fact, advanced techniques are needed, capable of handling uncertainty
and incomplete knowledge at design-time as well as managing context changing and system
evolution at runtime. Moreover, they need to be effective, efficient and scalable, with fast
response times and low computation overheads. Possible methods to make these techniques
appropriate for runtime use include compositional, incremental, and parametric approaches.
Furthermore, they need to be capable of meeting the short time window given to carry-out
the adaptation process. If this is infeasible, the techniques would ideally identify with high
confidence the degree to which the system may invalidate its requirements.

We concluded that existing assurance techniques fall short of the challenges accompanying
self-adaptive software systems. Hence, new evidence approaches and techniques are required
for cooperatively providing assurances in this type of systems at design-time and runtime.
We also identified the following key research question: “are the techniques employed for
providing assurances in self-adaptive systems a superset of the techniques used for the same

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 11

purpose in classical systems?”
Following our initial findings, we plan to investigate in more detail the applicability

of existing evidence techniques used in classical software systems for assuring dependable
system operation in self-adaptive systems. We intend to carry out a survey and examine
in depth the evidence techniques proposed in the literature and used in real self-adaptive
systems, focusing our research in verification and testing. The expected outcome of our
future work is to identify gaps in existing approaches as well as to discover connection points
and overlapping areas between different evidence techniques, as for example, between testing
and verification. We anticipate that a collection of assurance techniques should be used
at design-time and made available at runtime, in order to achieve, with high confidence,
dependable system operation in self-adaptive software systems.

References
1 J. Andersson, L. Baresi, N. Bencomo, R. de Lemos, A. Gorla, P. Inverardi, and T. Vogel.

Software Engineering Processes for Self-Adaptive Systems. In R. de Lemos, H. Giese,
H. Müller, and M. Shaw, editors, Software Engineering for Self-Adaptive Systems II, volume
7475 of Lecture Notes in Computer Science (LNCS), pages 51–75. Springer, 2013.

2 L. Baresi and C. Ghezzi. The disappearing boundary between development-time and run-
time. In Proceedings of the FSE/SDP workshop on Future of software engineering research
(FoSER ’10), pages 17–22, New York, NY, USA, 2010. ACM.

3 S. Becker, L. Grunske, R. Mirandola, and S. Overhage. Performance Prediction of
Component-Based Systems: A Survey from an Engineering Perspective. Architecting Sys-
tems with Trustworthy Components, pages 169–192, 2006.

4 B. W. Boehm, J. R. Brown, and M. Lipow. Quantitative evaluation of software quality. In
Proceedings of the 2Nd International Conference on Software Engineering, ICSE ’76, pages
592–605, Los Alamitos, CA, USA, 1976. IEEE Computer Society Press.

5 R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-adaptive Software Needs
Quantitative Verification at Runtime. Commun. ACM, 55(9):69–77, September 2012.

6 B. H. Cheng, R. Lemos, H. Giese, P. Inverardi, J. Magee, J. Andersson, B. Becker, N. Ben-
como, Y. Brun, B. Cukic, G. Marzo Serugendo, S. Dustdar, A. Finkelstein, C. Gacek,
K. Geihs, V. Grassi, G. Karsai, H. M. Kienle, J. Kramer, M. Litoiu, S. Malek, R. Miran-
dola, H. A. Müller, S. Park, M. Shaw, M. Tichy, M. Tivoli, D. Weyns, and J. Whittle. Soft-
ware engineering for self-adaptive systems. chapter Software Engineering for Self-Adaptive
Systems: A Research Roadmap, pages 1–26. Springer-Verlag, Berlin, Heidelberg, 2009.

7 S.-W. Cheng. Rainbow: Cost-Effective Software Architecture-Based Self-Adaptation. PhD
thesis, School of Computer Science, Carnegie Mellon University, Pittsburgh, USA, 2008.

8 R. de Lemos, D. Garlan, C. Ghezzi, and H. Giese. Software Engineering for Self-Adaptive
Systems: Assurances (Dagstuhl Seminar 13511). Dagstuhl Reports, 3(12):67–96, 2014.

9 R. de Lemos, H. Giese, H. A. Müller, M. Shaw, J. Andersson, M. Litoiu, B. Schmerl,
G. Tamura, N. M. Villegas, T. Vogel, D. Weyns, L. Baresi, B. Becker, N. Bencomo, Y. Brun,
B. Cukic, R. Desmarais, S. Dustdar, G. Engels, K. Geihs, K. Goeschka, A. Gorla, V. Grassi,
P. Inverardi, G. Karsai, J. Kramer, A. Lopes, J. Magee, S. Malek, S. Mankovskii, R. Mi-
randola, J. Mylopoulos, O. Nierstrasz, M. Pezzè, C. Prehofer, W. Schäfer, R. Schlichting,
D. B. Smith, J. P. Sousa, L. Tahvildari, K. Wong, and J. Wuttke. Software Engineering
for Self-Adaptive Systems: A second Research Roadmap. In R. de Lemos, H. Giese, H. A.
Müller, and M. Shaw, editors, Software Engineering for Self-Adaptive Systems II, volume
7475 of LNCS, pages 1–32. Springer, 2013.

www.manaraa.com

12 Software Engineering for Self-Adaptive Systems

10 H. Do, S. Elbaum, and G. Rothermel. Supporting controlled experimentation with testing
techniques: An infrastructure and its potential impact. Empirical Software Engineering,
10(4):405–435, 2005.

11 J. Kramer and J. Magee. Self-managed systems: An architectural challenge. In 2007
Future of Software Engineering, FOSE ’07, pages 259–268, Washington, DC, USA, 2007.
IEEE Computer Society.

12 S. Nair, J. L. de la Vara, M. Sabetzadeh, and L. Briand. An extended systematic liter-
ature review on provision of evidence for safety certification. Information and Software
Technology, 56(7):689 – 717, 2014.

13 V. Stantchev. Performance evaluation of cloud computing offerings. In Advanced Engineer-
ing Computing and Applications in Sciences, 2009. ADVCOMP ’09. Third International
Conference on, pages 187–192, Oct 2009.

2.6 Topology Awareness for Self-Adaptive Systems
Antonio Filieri, Inti Gonzalez-Herrera, Alessandra Gorla, and Liliana Pasquale

License Creative Commons BY 4.0 International license
© Antonio Filieri, Inti Gonzalez-Herrera, Alessandra Gorla, and Liliana Pasquale

Context awareness is a primary concern for self-adaptive systems. Such systems consider their
execution context either to adapt their behavior to new (unexpected) situations, or to improve
the satisfaction of existing requirements. Topology awareness concerns the description of
the physical, digital, and interaction space a self-adaptive system operates in. It is getting
momentum for applications requiring the system to reason about richer representations of
the execution context, such as security and access control [10], location-dependent mobile
applications [7, 11, 14], or web applications tailored to user profiles [6, 4]. Furthermore,
additional non-functional properties, e.g., dependability and performance, can directly benefit
of topology awareness.

Achieving topology awareness requires going through several challenges. First and
foremost, automatic reasoning requires a formal characterization of context topology and
relevant related concepts such as containment, proximity, and reachability [10]. Second, new
verification and adaptation techniques should be developed in order to identify, mitigate and
prevent violations of topology-related requirements. Finally, new monitoring infrastructures
should be designed to update topology models at runtime.

We believe topology-aware adaptation techniques will have in the near future a significant
impact on a number of emerging research and industrial areas, including Autonomous
Robots [5, 13, 9, 15, 12], Cyber-Physical Systems [1], the Internet-of-Things [2, 3], and Cloud
Computing [8, 16].

References
1 R. Al Ali, T. Bures, I. Gerostathopoulos, P. Hnetynka, J. Keznikl, M. Kit, and F. Plasil.

Deeco: An ecosystem for cyber-physical systems. In Companion Proceedings of the 36th
International Conference on Software Engineering, ICSE Companion 2014, pages 610–611,
New York, NY, USA, 2014. ACM.

2 L. Atzori, A. Iera, and G. Morabito. The internet of things: A survey. Comput. Netw.,
54(15):2787–2805, Oct. 2010.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 13

3 F. Bao and I.-R. Chen. Dynamic trust management for internet of things applications. In
Proceedings of the 2012 International Workshop on Self-aware Internet of Things, Self-IoT
’12, pages 1–6, New York, NY, USA, 2012. ACM.

4 A. B. Barragáns-Martínez, E. Costa-Montenegro, J. C. Burguillo, M. Rey-López, F. A.
Mikic-Fonte, and A. Peleteiro. A hybrid content-based and item-based collaborative filter-
ing approach to recommend tv programs enhanced with singular value decomposition. Inf.
Sci., 180(22):4290–4311, Nov. 2010.

5 M. Beetz, T. Schmitt, R. Hanek, S. Buck, F. Stulp, D. Schröter, and B. Radig. The
agilo robot soccer team—experience-based learning and probabilistic reasoning in
autonomous robot control. Auton. Robots, 17(1):55–77, July 2004.

6 G. Castellano, A. M. Fanelli, and M. A. Torsello. Computational intelligence techniques
for web personalization. Web Intelli. and Agent Sys., 6(3):253–272, Aug. 2008.

7 L. Jedrzejczyk, B. A. Price, A. K. Bandara, and B. Nuseibeh. On the impact of real-time
feedback on users’ behaviour in mobile location-sharing applications. In Proceedings of the
Sixth Symposium on Usable Privacy and Security, SOUPS ’10, pages 14:1–14:12, New York,
NY, USA, 2010. ACM.

8 H. Kurra, Y. Al-Nashif, and S. Hariri. Resilient cloud data storage services. In Proceedings
of the 2013 ACM Cloud and Autonomic Computing Conference, CAC ’13, pages 17:1–17:9,
New York, NY, USA, 2013. ACM.

9 R. O’Grady, R. GroB, A. L. Christensen, and M. Dorigo. Self-assembly strategies in a
group of autonomous mobile robots. Auton. Robots, 28(4):439–455, May 2010.

10 L. Pasquale, C. Ghezzi, C. Menghi, C. Tsigkanos, and B. Nuseibeh. Topology aware adap-
tive security. In Proceedings of the 9th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS 2014, pages 43–48, New York, NY, USA,
2014. ACM.

11 S. Saroiu and A. Wolman. Enabling new mobile applications with location proofs. In Pro-
ceedings of the 10th Workshop on Mobile Computing Systems and Applications, HotMobile
’09, pages 3:1–3:6, New York, NY, USA, 2009. ACM.

12 A. V. Savkin and H. Teimoori. Decentralized navigation of groups of wheeled mobile robots
with limited communication. Trans. Rob., 26(6):1099–1104, Dec. 2010.

13 E. J. van Henten, J. Hemming, B. A. J. van Tuijl, J. G. Kornet, J. Meuleman, J. Bontsema,
and E. A. van Os. An autonomous robot for harvesting cucumbers in greenhouses. Auton.
Robots, 13(3):241–258, Nov. 2002.

14 U. Varshney. Location management for mobile commerce applications in wireless internet
environment. ACM Trans. Internet Technol., 3(3):236–255, Aug. 2003.

15 H. Yu and Y. Wang. Coordinated collective motion of groups of autonomous mobile robots
with directed interconnected topology. J. Intell. Robotics Syst., 53(1):87–98, Sept. 2008.

16 Y. Yu, J. Ni, M. H. Au, H. Liu, H. Wang, and C. Xu. Improved security of a dynamic remote
data possession checking protocol for cloud storage. Expert Syst. Appl., 41(17):7789–7796,
Dec. 2014.

www.manaraa.com

14 Software Engineering for Self-Adaptive Systems

3 Overview of Talks

3.1 Integrating Predictive Analysis with Self-Adaptive Systems
Ivan Paez Anaya (University of Rennes 1, FR)

License Creative Commons BY 4.0 International license
© Ivan Paez Anaya

Recent literatures surveys have shown that the temporal aspects of self-adaptation is an area
under explored. Furthermore, most of the current approaches are reactive. In some scenarios
such as safety-critical systems (e.g. environmental monitoring), where the cost of failure
could involve casualties, public and private property damage, the need for pro-activeness is
obligatory. Current monitoring mechanisms in Self-adaptive systems are focus on instant
values of the environment. This brings the problem of possible unnecessary adaptations that
could happens in transients situations, than means that the event that triggers an adaptation
is shorter than the time the system needs to carry on with the adaptation. Another scenario
in which pure reactive adaptive adaptation is unfit is when we are facing seasonal behavior
(e.g. hourly, daily, weekly, monthly phenomenons.). Failure to recognize these patterns can
derive in oscillatory adaptations going from one state to another in a pendulous manner.

My research topic focus on the temporal aspects of self-adaptation aiming to improve
the current state of self-adaptive systems by introducing predictive analytics techniques
into the control loops. Techniques such as data mining, machine learning algorithms and
predictors. The contributions of combining Self-Adaptive approach with Predictive Analytics
are summarized in the three following points: 1) Multi objective selection of input variables
for predictive models. 2) Balancing functional and nonfunctional properties of predictive
models. 3) Predictive models as fitness functions in SBSE.

We integrate predictive analytics in three phases of the software process. An design
time, we propose a multi-objective features input selection, with this, we are able to select
those characteristics that best describe the behavior of the system. The machine learning
techniques that can be used in this phase are data preprocessing, redimensioning and
dimensional analysis. Detecting erroneous readings by removing out-layers form the data
is also a beneficial in this phase. At runtime, we propose for the the self-adaptive systems
classification and categorization techniques for drawing predictions that will feed the decision
making mechanism in the control loop of the autonomic systems. As well as trade-off
analysis of functional and non-functional properties of the system by using techniques such
as correlation analysis of input variables.

3.2 Handling Insider Threats through Self-Adaptation
Christopher Bailey (University of Kent, GB)

License Creative Commons BY 4.0 International license
© Christopher Bailey

Authorisation infrastructures are an integral part of any network where electronic resources
require protection. As networks expand and organisations begin to federate access to their
resources, authorisation infrastructures become increasingly challenging to manage. This talk
explores the automatic adaptation of authorisation assets (such as, access control policies
and subject access rights) in order to handle the identification and mitigation of insider

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 15

attacks, in regards to the abuse of privileged access. We demonstrate adaptation with
an autonomic controller, capable of managing policy based role/attribute access control
authorisation infrastructures. The autonomic controller implements a feedback loop to
monitor the authorisation infrastructure in terms of its assets and subject behaviour, analyse
a modelled system state for evidence of malicious behaviour, and act upon malicious behaviour
by controlling future authorisation decisions. We discuss our evaluation techniques as well as
preliminary results gained through the simulation of malicious behaviour within a deployed
federated authorisation infrastructure.

3.3 Engineering Resource-Efficient and Elastic Self-Adaptive Systems
Matthias Becker (Universität Paderborn, DE)

License Creative Commons BY 4.0 International license
© Matthias Becker

Large business information systems nowadays run in cloud computing environments that
have virtually unlimited computing resources. However, a resource-efficiency is still desired,
because these computing resources are typically paid per use. Self-adaptive systems can
autonomously adapt their architecture during operation and thus can potentially operate
resource-efficient at all times. However, in current practice, self-adaptive systems are
implemented and configured based on experience of software architects and rule-of-thumb.
Design deficiencies limiting resource-efficiency and elasticity are often discovered in late
development phases, i.e., in testing or even in operation.

We are developing SimuLizar, an engineering method that supports software architects
to model resource-efficient and elastic self-adaptive multi-resource systems. The method
supports software engineers with identifying and deciding quality trade-offs using the RELAX
requirements language. Multiple relevant quality metrics can be predicted with SimuLizar
such that design deficiencies in the software architecture and self-adaptation capabilities
that limit resource-efficiency and elasticity can be identified already at design-time. Thus,
unnecessarily high operation costs can be prevented and marginal costs for higher workloads
become predictable.

3.4 Is it Useful to Make AUTOSAR Fully Dynamic?
Amel Belaggoun (CEA LIST, FR)

License Creative Commons BY 4.0 International license
© Amel Belaggoun

Increasingly, safety critical applications must function reliably and dynamically adapt their
structure and /or behavior at runtime in response to changing conditions and environment.
Runtime reconfiguration is a powerful mechanism to perform such adaptation. While few
works have started developing techniques to perform software dynamic reconfiguration in
real-time embedded systems and specifically in AUTOSAR, no work has provided an approach
to perform safe runtime adaptation in AUTOSAR. I will present a first step in addressing
this challenge.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

16 Software Engineering for Self-Adaptive Systems

3.5 Supporting Senior Shoppers with Self-Adaptive Personalized
Web-Tasking

Lorena Castaneda (University of Victoria, CA)

License Creative Commons BY 4.0 International license
© Lorena Castaneda

E-commerce applications are highly popular among internet shoppers. However, changes
on the variety of devices, services and applications add complexity during the web task
execution. While technologically savvy people can easily handle this complexity, seniors
might be challenged by numerous interaction steps. In particular, health conditions and
degenerative diseases affect user’s capability of interacting with devices or performing web
tasks properly.

Personalized Web-Tasking (PWT) systems automate ordinary and repetitive web tasks
while exploiting the personal context of the user to deliver personalized features. Current
approaches of web automation and personalization rely on recorded information about users
and their web interactions. In addition to this, self-adaptive PWT systems are capable
to dynamically understand users’ changing goals and situations, while adapting itself at
runtime. Our research focuses on the context-aware and self-adaptive capabilities of PWT
systems. The expected results of this work include: (1) a modelling specification for PWT,
(2) a reference model for the design of PWT systems, and (3) a PWT model processing
infrastructure.

This talk presents our recent contributions and ongoing work in the realization of self-
adaptive PWT systems. We describe an e-commerce scenario focused on seniors in order
to illustrate the importance of self-adaptive PWT systems capable to assist users in the
fulfilment of personal goals using internet technologies.

3.6 The Vision of Model-Integrating Development
Mahdi Derakhshanmanesh (University of Koblenz-Landau, DE)

License Creative Commons BY 4.0 International license
© Mahdi Derakhshanmanesh

The development of complex software systems remains a challenge. Model-driven development
approaches have been proposed and applied to achieve a certain degree of automation.
Moreover, the use of models at runtime receives more and more attention as an enabling
technology for separating concerns into explicit models and for controlled change operations
on the running software, e.g., to realize self-adaptation. Despite their central role in the
software development process, we observe that models are still not being treated as first-class
entities: shipped software products still primarily consist of code. In order to leverage the
full potential of models, we propose a realization concept for Model-Integrating Components
(MoCos) that is compatible with existing component technologies. One can freely choose the
portion of (executable) models and code when realizing a software component. These MoCos
are the essential building blocks for a novel Model-Integrating Development (MID) approach
to software engineering where models and code are artifacts with equal rights.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 17

3.7 Testing Self-adaptive, Self-organising Systems
Benedikt Eberhardinger (Universität Augsburg, DE)

Main reference B. Eberhardinger, H. Seebach, A. Knapp, and W. Reif: Towards Testing Self-organizing, Adaptive
Systems. M.G. Merayo and E. Montes de Oca (Eds.): ICTSS 2014, LNCS 8763, pp. 180–185, 2014.

License Creative Commons BY 4.0 International license
© Benedikt Eberhardinger

The characteristics of self-adaptive, self-organising systems lead to a significant higher
flexibility and robustness against a changing environment. Unfortunately, this flexibility
makes it hard to test these systems adequately. To assure their quality, however, it is
inevitable to do so.

Our approach for testing is based on the Corridor Enforcing Infrastructure (CEI), an
architectural pattern for SOAS. The CEI uses the concepts of feedback-loops to continuously
observe and control the system if necessary. On that account monitoring is used to achieve
situational awareness which is prerequisite to organise the system in a way to fulfil its
requirements. The bulk of concepts and techniques used in the CEI for controlling and
organising the system is triggered by the violation of constraints. An error-free CEI will
consequently guarantee a system that fulfils its requirements at every time. On this account,
we claim that testing SOAS can be achieved by testing the CEI. Here we benefit from specific
characteristics: we are able to reduce the relevant state space of the system to be tested
tremendously and to gain a clear distinction between correct and incorrect behaviour out of
the concepts of the CEI – essential for evaluating the tests. SOAS are highly distributed
systems, interacting locally to solve problems. This locality is exploited in our approach,
since many test cases can focus on single agents or small agent groups the system is composed
of; this focus makes it easier to execute and evaluate them. Furthermore, it is possible to
use the test results of local agents and agent groups to make a statement about the whole
system.

3.8 Automated control synthesis for dependable software adaptation
Antonio Filieri (Stuttgart University, DE)

License Creative Commons BY 4.0 International license
© Antonio Filieri

Self-adaptation enables software to cope with changing and unpredictable environments.
Control theory provides a variety of mathematically grounded techniques for adapting the

behavior of dynamic systems. While it has been applied to specific software control problems,
it has proved difficult to define methodologies allowing non-experts to systematically apply
control techniques to create adaptive software.

However, at a convenient level of abstraction, broad classes of problems reveal similar
behavioral properties, allowing for the automated identification of a suitable dynamic model
and the synthesis of controllers with formally proved quality guarantees. As many practical
problems fall into treatable classes, automated control synthesis may draw in the near future
a new path toward dependable software adaptation.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

18 Software Engineering for Self-Adaptive Systems

3.9 Design Principles for Adaptive Communication Systems
Alexander Frömmgen (TU Darmstadt, DE)

License Creative Commons BY 4.0 International license
© Alexander Frömmgen

Today’s distributed systems have to work in changing environments and under different
working conditions. To provide high performance under these changing conditions, distributed
systems and communication systems have to implement adaptive behaviour.

My research concentrates on design principles for such adaptive communication systems.
Therefore, I am interested in the general description of adaptive behaviour, the possible
configurations and compositions of mechanisms, as well as the concrete execution of transi-
tions between these mechanisms. I am focusing on different network layers, especially the
application layer and network protocols.

My work is integrated in the Collaborative Research Centre “MAKI” (Multi-Mechanism
Adaptation for the Future Internet), which develops adaptive communication systems.

3.10 Runtime Quantitative Verification in Self-Adaptive AI Systems
Simos Gerasimou (University of York, GB)

License Creative Commons BY 4.0 International license
© Simos Gerasimou

Modern software systems need to self-adapt while providing service in order to cope with the
uncertain environment in which the systems operate, changing requirements and evolution
occurring in the system themselves. Consequently, trustworthy and dependable operation in
these systems is very important. This is more evident when these systems are deployed in
safety-critical or business-critical applications where they are expected to adhere to strict
performance, resource usage and other quality-of-service (QoS) requirements. Runtime
quantitative verification (RQV), a new approach for the analysis of systems exhibiting
stochastic behaviour, is a key technology in achieving both adaptation and continual compli-
ance with QoS requirements. Nevertheless, existing RQV techniques suffer from significant
overheads and cannot comply with the strict execution time and resource usage constraints
that characterise most runtime scenarios. The research we carry out aims to address some of
these challenges and also to extend the applicability of RQV to larger and more complex
self-adaptive software systems.

3.11 Adaptation in Ensemble-Based Component Systems: From
System Goals to Architecture Configurations

Ilias Gerostathopoulos (Charles University, CZ)

License Creative Commons BY 4.0 International license
© Ilias Gerostathopoulos

Ensemble-based component systems (EBCS) is a class of software component systems that
features the modelling constructs of autonomous components and ad-hoc groups (called
ensembles). These constructs have proven suitable for the development of networked, highly

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 19

dynamic cyber-physical systems, such as an intelligent decentralised car parking system or
an emergency coordination system. In this talk, I will focus on the problem of designing
such systems so that their situation-specific system-level goals are consistently mapped to
implementation-level artefacts. I will present a design method – IRM-SA – that allows
for such systematic design. The method establishes traceability between requirements and
architecture in EBCS, while the outcome of the method (IRM-SA model) can be used at
runtime to provide system adaptation in form of architecture reconfiguration.

3.12 Model-based Probabilistic Incremental Verification for Evolving
Systems

Sinem Getir (University of Stuttgart, DE)

License Creative Commons BY 4.0 International license
© Sinem Getir

Probabilistic verification play an important role for verifying the quality attributes such as
reliability, safety and performance. On problem however is, that system re-verification is
needed whenever the software changes. Re-verifying of a changing model multiple times
is expensive. Recently, incremental approaches have been found to be promising for the
verification of evolving and and self-* systems. However, substantial improvements have not
yet been achieved for evaluating structural changes in the model. This talk discusses an
incremental verification framework that allows efficient evaluation of the changing models.

3.13 Multi-Quality Auto-Tuning: From Energy-neutrality to Robots
and Roles

Sebastian Götz (TU Dresden, DE)

License Creative Commons BY 4.0 International license
© Sebastian Götz

In this talk, I’ll first outline a development and operation framework for self-optimizing
software systems called MQuAT (Multi-Quality Auto-Tuning). Then, I’ll focus on (software-
)energy-optimization in particular, including a technique to save energy by frequency scaling
and an approach to assess and compare the energy consumption of mobile applications.
Additionally, I’ll present a concept and prototype to realize energy-neutral software systems.
Finally, I’ll discuss work in the area of model-driven robot software engineering.

3.14 Resource reservation in pervasive middleware
Inti Gonzalez-Herrera (University of Rennes 1, FR)

License Creative Commons BY 4.0 International license
© Inti Gonzalez-Herrera

The interest on distributed component-based software development is growing stronger
due to, among other factors, the future Internet of Things (IoT). In a vision of the IoT,
the infrastructure is shared among many stakeholders who deploy their own components

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

20 Software Engineering for Self-Adaptive Systems

independently. As a result, no single stakeholder is able to centrally manage the computing
resources and such a task must be carry on by the middleware. In a context where components
share resources as memory and CPU cycles, the middleware must provide the each component
with the resources it demands but it also must enforce quotas of consumption. To do so,
the middleware monitors the system and executes adaptations as components’ migration,
modification of components’ behaviour and modification of communication’s patterns.

This research focuses in two aspects of the control loop, monitoring and execution
of the plan. In particular, it aims at providing mechanisms for Java-based middleware
to: i) perform resource consumption monitoring, ii) enforce resource reservation and, iii)
execute runtime reconfiguration to provided distributed resource reservation. We describe
mechanisms to perform scalable resource consumption monitoring and reservation. We also
discuss approaches to identify the source of a faulty behaviour regarding resource usage.
Finally, we present our vision on distributed decision making about resource reservation and
how the paradigm of Models@runtime can be used as foundation for its implementation.

3.15 Self-Healing by Means of Intrinsic Redundancy
Alessandra Gorla (Universität des Saarlandes, DE)

License Creative Commons BY 4.0 International license
© Alessandra Gorla

Software can be redundant, in the sense that some operations are expected to behave
like others, but their actual executions differ. This redundancy can be either deliberately
introduced, as in the case of N-version programming, or intrinsically present due to common
design and development practices. I present a technique that, by means of intrinsic redundancy,
can make applications resilient to runtime failures, and thus achieve self-healing in software.
The technique is intended to maintain a faulty application functional in the field while the
developers work on permanent and radical fixes. It targets field failures in applications
built on reusable components. In particular, the technique exploits the intrinsic redundancy
of those components by identifying workarounds consisting of alternative uses of a faulty
component that avoid the failure. The technique has been implemented and evaluated for
Web [1] and Java [2] applications.

References
1 A. Carzaniga, A. Gorla, N. Perino, and M. Pezzè. Automatic workarounds for web applica-

tions. In FSE’10: Proceedings of the 2010 Foundations of Software Engineering conference.
ACM, New York, NY, USA, 237–246.

2 A. Carzaniga, A. Gorla, N. Perino, A. Mattavelli, and M. Pezzè Automatic recovery from
runtime failures. In Proceedings of the 2013 International Conference on Software Engi-
neering. IEEE Press, 782–791.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 21

3.16 Integrating Observation and Modeling Techniques to Support
Adaptation and Evolution of Software-intensive Systems

Robert Heinrich (Karlsruhe Institute of Technology, DE)

License Creative Commons BY 4.0 International license
© Robert Heinrich

The increased adoption of service-oriented technologies and cloud computing creates new
challenges for the adaptation and evolution of long-living and software-intensive systems.
Software services and cloud platforms are owned and maintained by independent parties.
Software engineers and system operators of these systems only have limited visibility and
control over the third-party elements. Traditional monitoring provides software engineers
and system operators with execution observation data which are used as basis to detect
anomalies. If the services and the cloud platform are not owned and controlled by the system
engineers, monitoring the execution is a challenging task.

The aim of our research is to develop and validate advanced techniques which empower
the system engineers to observe and detect upcoming quality flaws and anomalies of the
execution of software-intensive systems. For this, we extend and integrate previous work on
adaptive monitoring, software system modeling and analysis. We apply models@runtime as
means to adjust the observation and anomaly detection techniques during system operation.

For demonstrating the feasibility and potential benefits gained and for providing feedback
to guide the research, we continuously evaluated our results using the established research
benchmark CoCoME.

3.17 Elicitation, Discovery and Evolution of Contextual Requirements
Alessia Knauss (University of Victoria, CA)

License Creative Commons BY 4.0 International license
© Alessia Knauss

Increasingly complex socio-technical systems operate in continually changing environments.
Such systems involve the interplay of human actors and technology. Changes in the context
of the system might lead to changed user needs requiring a socio-technical system to adjust
its behaviour. Due to uncertainty and increasingly changing operational environment such
systems need to update their knowledge about end-user needs and context that influences
the execution of end-user requirements. While self-adaptive systems are designed to address
the challenges of changing context, the uncertainty in the operational environment poses
outstanding challenges to capture and evolve requirements at runtime. By exploiting the
concept of contextual requirements as composed of requirements and context as two entities
that can evolve separately, my dissertation presents a framework for the analysis and discovery
of contextual requirements at runtime. In three studies I explore the usefulness of existing
techniques, i.e., requirements elicitation techniques and machine learning techniques, for the
elicitation, discovery and evolution of contextual requirements. In my presentation I will
give a short overview of my PhD thesis.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

22 Software Engineering for Self-Adaptive Systems

3.18 System-Level Abstractions for Integrating Control Mechanisms
into Software Systems

Filip Krikava (University Lille 1 / LIFL, INRIA Lille, FR)

License Creative Commons BY 4.0 International license
© Filip Krikava

Control theory provides solid foundations and tools for designing and developing a reliable
feedback control that drives software adaptations at runtime. However, the integration of
the resulting control mechanisms is usually left to an extensive handcrafting of a non-trivial
implementation code. This is a challenging task when considering the variety and complexity
of contemporary distributed computing systems.

In our work, we aim to address this by providing flexible system-level abstractions in a
form of runtime software models–i.e., models that are causally connected with running systems
to monitor and manage specific aspects of their state and their environments. Such models
allow to seamlessly observe and modify the underlying systems without the need for coping
with low-level implementation and infrastructure details. Furthermore, techniques from
model-driven engineering, such as model consistency checking and model transformations,
can be used to systematically develop monitoring and reconfiguration parts of feedback
control loops. As a result, this should allow researchers and engineers to experiment and to
put easily in practice different self-adaptation mechanisms and policies.

3.19 Requirements Engineering Framework for Self Adaptive Software
Systems

Juan Carlos Muñoz Fernández (Universidad Icesi, CO / Université Paris 1 Panthéon
Sorbonne, FR)

License Creative Commons BY 4.0 International license
© Juan Carlos Muñoz Fernández

Self-adaptation is a promising approach to manage the complexity of modern software systems
that are required to adapt themselves autonomously. The dynamic nature of changing and
evolving requirements is an important aspect in these systems. This kind of systems must
be able to adapt to these changes, being it necessary to have a representation of their own
requirements definition and to process their changes at runtime. Several results have shown
that dynamic software product lines are feasible and useful in different software contexts
including the modeling of requirements. From a literature review, we conclude that the
modeling and characterization of requirements for SAS systems is an area that requires
further exploration to be fully solved. The talk presents the current work the in the definition
of the requirements engineering phase in the software development life cycle for self-adaptive
systems based on the language proposed by Sawyer et al. [1]. The goal with an improved
language and a framework is to provide a better the way of specifying requirements for SAS
systems.

References
1 P. Sawyer, R. Mazo, D. Diaz, C. Salinesi, and D. Hughes. Using constraint programming

to manage configurations in self-adaptive systems. IEEE Computer, 45(10):56–63, 2012.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 23

3.20 Topology Aware Adaptive Security
Liliana Pasquale (Lero University, IE)

License Creative Commons BY 4.0 International license
© Liliana Pasquale

Adaptive security systems aim to protect valuable assets in the face of changes in their
operational environment. They do so by monitoring and analysing this environment, and
deploying security functions that satisfy some protection (security, privacy, or forensic)
requirements. This talk suggests that a key characteristic for engineering adaptive security
is the topology of the operational environment, which represents a physical and/or a digital
space – including its structural relationships, such as containment, proximity, and reachability.
For adaptive security, topology expresses a rich representation of context that can provide a
system with both structural and semantic awareness of important contextual characteristics.
These include the location of assets being protected or the proximity of potentially threatening
agents that might harm them. Security-related actions, such as the physical movement of
an actor from a room to another in a building, may be viewed as topological changes. The
detection of a possible undesired topological change (such as an actor possessing a safe’s key
entering the room where the safe is located) may lead to the decision to deploy a particular
security control to protect the relevant asset. By monitoring changes in topology at runtime
one can identify new or changing threats and attacks, and deploy adequate security controls
accordingly. The talk elaborates on the notion of topology and provides a vision and research
agenda on its role for systematically engineering systems that satisfy their security, privacy
and forensic requirements.

3.21 Constraints in Self-organizing, adaptive Systems
Alexander Schiendorfer (Universität Augsburg, DE)

License Creative Commons BY 4.0 International license
© Alexander Schiendorfer

Self-organizing, adaptive systems (SOAS) such as those considered in Organic Computing
benefit from redundancies introduced to assert a certain fault tolerance and the ability to
stay functional in case of failures. Resource allocation problems such as the distribution of
a given predicted energy demand to a set of power plants are instances of tasks that can
benefit from a self-organizing structure to deal with uncertainty and scalability. However,
in order to control these systems (or even understand their behaviour), we need to devise
algorithms and techniques dealing with their complex nature. Constraint programming
and mathematical programming are successful paradigms designed to model a variety of
satisfaction and optimization problems and solve them with generic algorithms. Therefore, a
systematic integration of these declarative approaches into the engineering process of self-
adaptive software is desirable. We present several techniques that are designed to incorporate
preferences by means of soft constraints, physical relational models to add a semantic layer
over pure constraint models and abstraction techniques to scale systems using hierarchies.
An overview of this approach has been published in the Proceedings of the Second Organic
Computing Doctoral Dissertation Colloquium 2014 and is available online.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

24 Software Engineering for Self-Adaptive Systems

3.22 Runtime Model based Privacy Checks of Cloud Services
Eric Schmieders (Paluno – University of Duisburg-Essen, DE)

License Creative Commons BY 4.0 International license
© Eric Schmieders

Cloud elasticity enables cloud services to automatically adapt to workload changes by dy-
namically allocating and de-allocating hardware resources. Hardware allocation is achieved
by virtual machine replication and migration that adds, removes, and re-deploys service
components within or across data centers and thus alternates components and their de-
ployments during runtime. Dynamically replicated or migrated components being part of
complex cloud services may transfer data (even via intermediate components) to locations
that are excluded by privacy policies. As dynamic adaptations are unpredictable during
design time, changed compositions and deployments have to be observed and checked against
privacy policies during runtime. In order to support the prevention of privacy violations,
we focus on potential privacy violations that result from potential data transfers occurring
once related cloud service functions are invoked. However, potential data flows are not
observable, as they are not reflected in replication and migration events emitted by cloud
infrastructures. This makes the detection of potential privacy violations problematic. To
tackle this problem, we explore the utilization of runtime models in order to reflect cloud
services, their components, and interactions, which allows for reasoning on potential privacy
violations among the cloud service composition. Based on the key idea of detecting privacy
violations on runtime models, this talk will discuss two main technical challenges faced when
putting the approach into practice and, further, points out how we address these challenges:
(a) the challenge of observing cloud elasticity despite the limited visibility of cloud internals
and (b) the challenge of checking realistic cloud services of large size and complexity.

3.23 A Comprehensive Framework for the Development of Dynamic
Smart Spaces

Adnan Shahzada (Politecnico di Milano, IT)

License Creative Commons BY 4.0 International license
© Adnan Shahzada

The conception of efficient smart spaces requires a reliable framework for their design,
implementation, testing, and deployment. The development life cycle of these smart spaces
differs greatly from the conventional software systems, as it poses various challenges during
each development phase such as: provision of appropriate design abstractions, integration and
coordination of heterogeneous components, incremental evaluation and deployment of the
system, and formation of ad-hoc network to cater dynamism in diverse smart spaces. There
have been numerous solutions proposed to solve different aspects related to smart spaces,
but we still lack a conceptual framework that provides tools for the whole development life
cycle. This work presents a generic and comprehensive development framework that allows
the developer to move seamlessly from a fully virtual, simulated solution to a completely
deployed system. The framework uses a group-based organization for the coordination
and cooperation among the heterogeneous components of a smart space. It also provides
interfaces to surrogate certain sets of system components through external simulators, and
ease the deployment of physical elements. The usefulness of the proposed framework has

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 25

been demonstrated with the help of diversified smart spaces.

3.24 Automated approaches to build self-adaptive systems
Romina Spalazzese (Malmö University, SE)

License Creative Commons BY 4.0 International license
© Romina Spalazzese

Nowadays, our living environment is pervaded by a wide variety of heterogeneous digital
systems that are connected to the Internet. The number and kind of connected systems have
been always increasing and this growth trend will continue in the future. In this context,
systems meet and know each other dynamically, when they want to start to interoperate to
achieve some goal. Key challenges, thus, are to enable systems to interoperate seamlessly
and to guarantee some properties despite context changes. Given the huge heterogeneity and
dynamism characterizing the described environment, automated solutions appear to be the
only way to face such challenges timely and with the needed level of flexibility.

In this talk I will present our recent and current work and future research directions. I
will describe a solution for the automated synthesis of connectors (a) that takes into account
performance concerns during the synthesis process and (b) whose synthesized connectors
are (self-)adaptive with respect to runtime performance requirement changes. Moreover,
I will talk about our ongoing work on an approach to automatically build context-aware
(self-)adaptive systems. Our approach elicits automatically relevant context-variability and
properly extends the systems to make them self-adaptive to context changes.

3.25 Context-based Face Recognition for Smart Application
Nina Taherimakhsousi (University of Victoria, CA)

License Creative Commons BY 4.0 International license
© Nina Taherimakhsousi

Face recognition is a challenging computational task which assigns an identity to detected
faces. There has been prodigious improvement on face recognition in recent years. At
first, researchers focused on face recognition under controlled conditions. Facilitated by
classic datasets, researchers investigated face recognitions invariant to changes in pose, facial
expression and illumination. Despite their initial success, substantial face recognition research
is required in less-controlled or uncontrolled conditions, such as in personal photo collections,
web images and videos, as found in on-line social networks. Searching over a large set of
images amplifies the need more robust face recognition methods.

I propose to investigate real-time context-based approaches for face recognition available
to improve face recognition processes. My expected contributions include a context-based
face recognition framework for mobile devices to improve accuracy rate. For example, with
the help of location sensors on the mobile devices annotated images with location information.
I propose an algorithm that exploit context to reduce the search space of face recognition
and, therefore, achieve better result. Photos are clustered by locations on the server that are
then associated with a face classifier. A client can send a query to the server by uploading
a subject image with the location information. The face recognition algorithm suitable

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

26 Software Engineering for Self-Adaptive Systems

for narrow the search space on the server. My results are quite promising with respect to
accuracy and queries are answered in real-time.

3.26 Dependability Improvement by Self-Adaptation
Matthias Tichy (Chalmers | University of Gothenburg, SE)

License Creative Commons BY 4.0 International license
© Matthias Tichy

Cyber-physical systems often have to satisfy high dependability requirements, e.g., reliability
and safety. Self-adaptation enables a system to sense the current state related to dependability
(e.g., failures of system parts), analyze the state, plan corrective actions and execute them.
In this talk, we present approaches addressing safety and availability. First, with respect to
safety, we show how a system after detection of a failure executes architectural reconfigurations
to avoid a hazard. We present an analysis approach to check whether the reconfiguration is
fast enough to avoid that the hazard happens. Second, we combine graph transformations
and the planning domain definition language in an approach to compute repair plans to
improve the availability. We show evaluation results of how many systems a central planning
system can concurrently supply with repair plans.

3.27 Model-Driven Engineering of Self-Adaptive Software with
EUREMA

Thomas Vogel (Universität Potsdam, DE)

Main reference Thomas Vogel and Holger Giese. 2014. Model-Driven Engineering of Self-Adaptive Software with
EUREMA. ACM Trans. Auton. Adapt. Syst. 8, 4, Article 18 (January 2014).

URL http://dx.doi.org/10.1145/2555612
License Creative Commons BY 4.0 International license

© Thomas Vogel

The development of self-adaptive software requires the engineering of an adaptation engine
that controls the underlying adaptable software by feedback loops. The engine often describes
the adaptation by runtime models representing the adaptable software and by activities such
as analysis and planning that use these models. To systematically address the interplay
between runtime models and adaptation activities, runtime megamodels have been proposed.
A runtime megamodel is a specific model capturing runtime models and adaptation activities.
In this article, we go one step further and present an executable modeling language for
ExecUtable RuntimE MegAmodels (EUREMA) that eases the development of adaptation
engines by following a model-driven engineering approach. We provide a domain-specific
modeling language and a runtime interpreter for adaptation engines, in particular feedback
loops. Megamodels are kept alive at runtime and by interpreting them, they are directly
executed to run feedback loops. Additionally, they can be dynamically adjusted to adapt
feedback loops. Thus, EUREMA supports development by making feedback loops explicit at
a higher level of abstraction and it enables solutions where multiple feedback loops interact
or operate on top of each other and self-adaptation co-exists with offline adaptation for
evolution.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1145/2555612
http://dx.doi.org/10.1145/2555612
http://dx.doi.org/10.1145/2555612
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

Thomas Vogel, Matthias Tichy, and Alessandra Gorla 27

3.28 Modeling Collaboration in Cyber-Physical Systems
Sebastian Wätzoldt (Universität Potsdam, DE)

License Creative Commons BY 4.0 International license
© Sebastian Wätzoldt

Cyber-Physical Systems (CPS) evolved from embedded systems that combine physical
processes with computing. Whereas embedded systems are mostly closed, self-contained and
do not expose the computing capability to the outside, an increasing number of devices and
demands of combined functionalities led to a more and more interconnection of embedded
systems to so-called networked embedded systems. As a consequence, such isolated control
systems and afterwards interconnected embedded systems become open to its environment
and build different variants of cyber-physical systems that integrate the cyber (software) and
physical part. While a CPS is a federation of open, ubiquitous systems that dynamically
and automatically reconfigure themselves and cooperate with other CPS, the modeling of
this cooperation (collaboration) has yet not gained the necessary attention as the modeling
of feedback loops traditionally emphasized in embedded system design still dominates the
thinking. By lifting collaborations to the level of first class entities when modeling CPS
and by covering diverse forms of feedback loop interactions such as hierarchy as well as
adaptation a modeling language can enable the appropriately exploring of the solution space
for CPS. In this talk, I will present ideas of my current research concerning the modeling of
collaboration in CPS.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

www.manaraa.com

28 Software Engineering for Self-Adaptive Systems

4 Participants
Ivan Paez Anaya

University of Rennes 1, FR
Christopher Bailey

University of Kent, GB
Matthias Becker

Universität Paderborn, DE
Amel Belaggoun

CEA LIST, FR
Lorena Castaneda

University of Victoria, CA
Mahdi Derakhshanmanesh

University of Koblenz-Landau,
DE

Benedikt Eberhardinger
Universität Augsburg, DE

Antonio Filieri
Stuttgart University, DE

Alexander Frömmgen
TU Darmstadt, DE

Simos Gerasimou
University of York, GB

Ilias Gerostathopoulos
Charles University, CZ

Sinem Getir
University of Stuttgart, DE

Sebastian Götz
TU Dresden, DE

Inti Gonzalez-Herrera
University of Rennes 1, FR

Alessandra Gorla
Universität des Saarlandes, DE

Robert Heinrich
Karlsruhe Institute of
Technology, DE

Alessia Knauss
University of Victoria, CA

Filip Krikava
University Lille 1 / LIFL, INRIA
Lille, FR

Juan Carlos Muñoz Fernández
Universidad Icesi, CO /
Université Paris 1 Panthéon
Sorbonne, FR

Liliana Pasquale
Lero University, IE

Alexander Schiendorfer
Universität Augsburg, DE

Eric Schmieders
Paluno – University of
Duisburg-Essen, DE

Adnan Shahzada
Politecnico di Milano, IT

Romina Spalazzese
Malmö University, SE

Nina Taherimakhsousi
University of Victoria, CA

Matthias Tichy
Chalmers University of
Technology, SE / University of
Gothenburg, SE

Thomas Vogel
Universität Potsdam, DE

Sebastian Wätzoldt
Universität Potsdam, DE

Photo by Schloss Dagstuhl

Acknowledgements

We would like to thank the Gesellschaft for Informatik e.V. (GI, German Society for Infor-
matics) and Schloss Dagstuhl for partially funding this seminar.

	Executive Summary Thomas Vogel, Matthias Tichy, and Alessandra Gorla
	Table of Contents
	Breakout Groups
	Smart Grid / Smart Home Self-adaptive Exemplar Amel Belaggoun, Alexander Frömmgen, Alexander Schiendorfer, Matthias Tichy, and Sebastian Wätzoldt
	Self-Adaptation in Highly Distributed Dynamic Systems Ilias Gerostathopoulos, Sebastian Götz, Filip Krikava, Adnan Shahzada, and Romina Spalazzese
	Artifact-Centric Requirements Engineering for Self-Adaptive Systems Alessia Knauss, Juan C. Muñoz-Fernández, Lorena Castañeda, Matthias Becker, Mahdi Derakhshanmanesh, Nina Taherimakhsousi, and Robert Heinrich
	Mitigating Data Leakage in Federated Self-Adaptive-Systems Eric Schmieders, Christopher Bailey, and Iván Páez Anaya
	Assurances for Self-Adaptive Software Systems Sinem Getir, Simos Gerasimou, Benedikt Eberhardinger, and Thomas Vogel
	Topology Awareness for Self-Adaptive Systems Antonio Filieri, Inti Gonzalez-Herrera, Alessandra Gorla, and Liliana Pasquale

	Overview of Talks
	Integrating Predictive Analysis with Self-Adaptive Systems Ivan Paez Anaya
	Handling Insider Threats through Self-Adaptation Christopher Bailey
	Engineering Resource-Efficient and Elastic Self-Adaptive Systems Matthias Becker
	Is it Useful to Make AUTOSAR Fully Dynamic? Amel Belaggoun
	Supporting Senior Shoppers with Self-Adaptive Personalized Web-Tasking Lorena Castaneda
	The Vision of Model-Integrating Development Mahdi Derakhshanmanesh
	Testing Self-adaptive, Self-organising Systems Benedikt Eberhardinger
	Automated control synthesis for dependable software adaptation Antonio Filieri
	Design Principles for Adaptive Communication Systems Alexander Frömmgen
	Runtime Quantitative Verification in Self-Adaptive AI Systems Simos Gerasimou
	Adaptation in Ensemble-Based Component Systems: From System Goals to Architecture Configurations Ilias Gerostathopoulos
	Model-based Probabilistic Incremental Verification for Evolving Systems Sinem Getir
	Multi-Quality Auto-Tuning: From Energy-neutrality to Robots and Roles Sebastian Götz
	Resource reservation in pervasive middleware Inti Gonzalez-Herrera
	Self-Healing by Means of Intrinsic Redundancy Alessandra Gorla
	Integrating Observation and Modeling Techniques to Support Adaptation and Evolution of Software-intensive Systems Robert Heinrich
	Elicitation, Discovery and Evolution of Contextual Requirements Alessia Knauss
	System-Level Abstractions for Integrating Control Mechanisms into Software Systems Filip Krikava
	Requirements Engineering Framework for Self Adaptive Software Systems Juan Carlos Muñoz Fernández
	Topology Aware Adaptive Security Liliana Pasquale
	Constraints in Self-organizing, adaptive Systems Alexander Schiendorfer
	Runtime Model based Privacy Checks of Cloud Services Eric Schmieders
	A Comprehensive Framework for the Development of Dynamic Smart Spaces Adnan Shahzada
	Automated approaches to build self-adaptive systems Romina Spalazzese
	Context-based Face Recognition for Smart Application Nina Taherimakhsousi
	Dependability Improvement by Self-Adaptation Matthias Tichy
	Model-Driven Engineering of Self-Adaptive Software with EUREMA Thomas Vogel
	Modeling Collaboration in Cyber-Physical Systems Sebastian Wätzoldt

	Participants

